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Statistical test for dynamical nonstationarity in observed time-series data

Matthew B. Kennel*
Engineering Technology Division, MS 8088, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8088

~Received 30 October 1996!

Information in the time distribution of points in a state space reconstructed from observed data yields a test
for ‘‘nonstationarity.’’ Framed in terms of a statistical hypothesis test, this numerical algorithm can discern
whether some underlying slow changes in parameters have taken place. The method examines a fundamental
object in nonlinear dynamics, the geometry of orbits in state space, with corrections to overcome difficulties in
real dynamical data which cause naive statistics to fail.@S1063-651X~97!09907-8#

PACS number~s!: 05.45.1b
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Since the discovery of time-delay embedding for sta
space reconstruction@1–3# a significant effort has been de
voted to the development of techniques to extract inform
tion in observed time-series data from a geometric
dynamical viewpoint. Underlying nearly all of these tec
niques~Ref. @4# is a review! is an assumption ofstationarity:
the dynamical process, and hence the geometrical attra
containing the orbits, has not changed on long time scales
order of the length of the dataset. If not true, there may
significant behavior on time scales longer than may be r
ably resolved with the given data; or perhaps experime
parameters, presumed fixed, have actually changed du
the run.

Despite its nearly universal assumption, there is little p
vious literature on reliably testing for stationarity in physic
situations. This work demonstrates a statistic and associ
hypothesis test which sensitively detects nonstationary
havior given broadband and potentially chaotic data. A s
tionary dataset is presumed to to be sufficiently long to tr
out a good approximation to the invariant measure. The
gorithm quantifies ‘‘how much has the invariant measure
inferred from the observations, changed over long ti
scales,’’ and whether ‘‘this change is statistically signi
cant.’’

It is important to recognize the difference between a s
tistic and a test. A statistic is a quantity deterministica
computable from a particular dataset; common examples
clude the sample mean or the value of a correlation integ
A test combines a statistic with some additional knowled
and assumptions concerning the distribution of that stati
expected under some particular hypothesis of interest. W
any nontrivial dynamics, the value of a particular statis
will differ for separate finite-sized samples of the time ser
generated by the same physical process, and thus one ne
probability distribution to describe the ‘‘expected fluctu
tions’’ in addition to the ‘‘expected value’’ of a statistic ove
some class of processes. Armed with such knowledge, a
places the observed value of the statistic in the expe
distribution: if it lies well outside the bulk of the expecte
distribution, one can ‘‘reject the null hypothesis’’—and, o
presumes, its underlying physical basis—under which
computed the expected distribution. A test is more an al
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rithm or procedure than a number. For illustration, consi
testing for chaos by using the largest Lyapunov exponen
a statistic. A positive Lyapunov exponent implies chaos,
one can only practically compute finite-time approximatio
to the exponent. There is a distribution of finite-time exp
nents over samples of the orbit, and thus even if the t
system has a zero or negative largest exponent, it is pos
that any particular finite-time sample will register a positi
Lyapunov exponent statistic. A true statistical test would
count for this source of fluctuations.

A useful test is obviously substantially more difficult t
design than a statistic, especially if one wishes to enter
realistic and interesting hypotheses and account for po
tially confounding effects likely to occur in experimental
observed data. There is a real tension between tests w
are accompanied by rigorous analytical results a
acceptance-rejection criteria from the classical statistical
erature, and the undeniably heuristic statistics invented
physicists and mathematicians to quantify particular prop
ties of a time series. The former may measure proper
rather uninteresting or irrelevant to a dynamicist, and ma
assumptions likely to be massively violated by actual tim
series~thus rendering their acceptance-rejection procedu
void!, while the latter do not usually come with sufficient
reliable test procedures.

For the purpose of testing for stationarity, one’s fir
thought is to imagine measuring any number of simple s
tistics, such as the mean or standard deviation, from the
halves of the time series, and using a standard stastis
hypothesis test based on their presumed equality, but suc
approach is not particularly good. First, the statistic is ar
trary and not related to any natural geometrical properties
the attractor, which is the interesting object when analyz
dynamical data. Unless the particular statistic estimates a
rameter deemed physically or dynamically important, su
arbitrary choices are not particularly enlightening, and th
power against various sorts of nonstationarity vary great

Second, naively applying such procedures may gre
overestimate the significance of differences: observed
namical data are far from uncorrelated, yet the simple, c
sical statistical estimations of confidence rely heavily on
notion of independent observations. For example, measu
empirical means of first and second halves of a cha
dataset and performing the classicalt test for their equality
@5# will quite often spuriously~and vehemently! reject the
316 © 1997 The American Physical Society
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56 317STATISTICAL TEST FOR DYNAMICAL . . .
null hypothesis of stationarity, even when the data co
from clean stationary experiments or well-known simp
models such as the Lorenz attractor. Such methods do
reliably diagnose the intuitive concept of dynamical statio
arity that a typical physicist imagines.

The present work attempts to rectify these two issue
sidestepdirect estimations of the invariant measure from o
served data. Counting points in boxes of coarse-grained s
space, as used for computing mutual information@6#, for
instance, introduces potentially problematic issues such
the arbitrary choice of box size, quantization artifacts, a
poor scaling with the embedding dimension. Kernel dens
estimators are very computationally intensive in higher
mensions, and functionals or statistics on such estimates
require difficult multidimensional integrals. Further, the
formalism does not naturally offer clear tests for sign
cance. Instead, the solution adopted here quantifies no
tionarity using properties ofnearest neighborsin state space
Neighbor searching is efficient and the estimates of con
quent properties do not have aprima facie exponential
‘‘curse of dimensionality.’’ Neighbor statistics were used
Refs.@7,8# to determine minimum embedding dimension f
reconstruction, and to quantify predictability of observ
chaotic data@9#. In any case, accounting for the serial corr
lation present in experimental data is a major focus of t
work, and neighbor information seems suited to this task

As background motivation, suppose we have two emp
cal probability distributionsr1 and r2, the measures in the
first and second halves of the dataset. These distributions
over the full multidimensional state space, not scalar his
grams. One wonders whether the observations are com
ible with the hypothesis thatr15r2. Rewrite these distribu-
tions as

r15
r11r2
2

1
r12r2
2

5r01dr, ~1!

r25
r11r2
2

2
r12r2
2

5r02dr. ~2!

Given somex from the first half, consider the probabilit
that its nearest neighbor in state space,xnn, is also in the
same half. Assumingr(xnn)'r(x), psame5r1 /(r11r2)
5(r01dr)/2r0. The expected proportion of matches is th

E dxr1~x!psame5 K ~r01dr!2

2r0
L
first half

.

With the same argument for the second half, we find
overall expectation of seeing same-half matches is

E~same!5 K ~r02dr!21~r02dr!2

2r0
L 5K r0

21dr2

2r0
L

5
1

2
1 K dr2

2r0
L . ~3!

Nonstationarity, i.e.,drÞ0, always increases this quantit
meaning that neighbors in state space are especially clo
timewhen the distribution drifts over time.
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The actual statistic ‘‘feels’’ the same effect but is mo
subtle: one collects the distribution o
D[uD(x)u[u(T(xnn)2T(x)u for all observed x, where
T( ) denotes the time index of the point. Nonstationar
induces an excess number of small values ofD than other-
wise expected. The data need not be partitioned into secti

Naively countingD from pointwise neighbors does no
render a successful algorithm. As with the correlation dim
sion @10#, one must exclude neighbors close in time beca
they are not independent of the reference point. If a prosp
tive neighbor would result inD5uT(xnn)2T(x)u,W, ignore
it and continue searching instead. The intervalW is set to a
characteristic autocorrelation time, perhaps 3–5 times
first minimum of mutual information.

Equally important, but less obvious, is accounting for s
rial correlation of neighboring trajectories: iterates of near
neighbors often remain nearest neighbors, but this does
give new information. The present algorithm gathers mu
tiple pairs of points and their neighbors which share the sa
D, i.e., are iterates of previously seen pairs, into the sa
strand. If the D associated withx( i ) is the same as that fo
x( i2k) for anykP@1,W#, appendx( i ) and its nearest neigh
bor to the strand associated withx( i2k). Otherwise, start a
new strand withx( i ), and its nearest neighbor with the as-y
sole element. Note that all pairs of a single strand need
be contiguous in time; there is allowed a gap up toW time
steps long, though this large an upper bound is rarely r
ized in practice. Allowing such gaps prevents noise fro
damaging the proper accounting of neighbor correlatio
Strands are collections of pairs of points which are nea
neighbors to one another, and which all share the sameD.
Their key utility is that they automatically correct for sub
stantial serial correlation in the time series by bundli
‘‘similar’’ observations into a single unit~see Ref.@8# for
details!.

The final correction culls strands which share any und
lying points, whether in the reference or neighbor part,
cause the information that they contribute is not complet
independent. If any two strands share any underlying po
one is randomly deleted until no remaining strands have
points in common.

Without the corrections, theN used in the statistical tes
would be substantially larger than it ought to be, and wo
cause spurious null violations. With the corrections, the
servedD values from the final strand set are nearly indep
dent of one another, and one can apply standard techni
of statistical inference assuming that they are so.

We test the observed distribution ofD for the final set of
strands against the distribution expected under the null
pothesis of stationarity. If the process were complete stat
arity, the time index of a neighbor would be independe
from that of the reference; this fact may be used constr
tively to generate the expected distribution. For each
served strand, keep the reference portion as it is, but ima
that the neighboring portion could have started at any ti
index in @1,N# with uniformly equal probability, excluding
the intervalW steps before the start andW steps after the end
of the reference portion of the strand, with starting indexj
and lengthl . Each potential ‘‘neighboring location’’ has a
associatedD which contributes to the expected distributio
That is, for each potential neighboring locationk
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318 56MATTHEW B. KENNEL
P@1,j2W#ø@ j1 l1W,N#, increment the count of expecte
D5uk2 j u: C(D)→C(D)11. Repeat for all strands, gene
ating a totalC(D), and normalize:

rexpected~D !5C~D !Y (
k
C~k!. ~4!

This procedure takes computation timeO(NpointsNstrands),
and so may be slow. An approximation good for reasona
largeN is the triangular-shaped function derived by assu
ing all strands are but a single point long, and that all ref
ence locations were used with uniform probability:

r~D !50, DP@0,W#,

r~D !5M21
N2D

N2~W11!
, DP@W11,N21#,

with M chosen to normalizer(D). This can be derived by
assuming a uniform probability density in@1,N# of a random
variable j and another variablek with uniform density in
@1,N# excluding @ j2W, j1W#, and integrating to find the
distribution of uk2 j u. The triangular distribution would be
exact for infinitely long datasets, or if strands were alwa
but one point long. The analytical approximation improv
with the increasing size of the dataset, the circumsta
when the computational effort grows increasingly burde
some. In practical application, switching to the analytic
formula whenNpointsNstrands.107 has proven to be a reason
able, and conservative, choice. Figure 1 shows an exam
observed and expected distribution as an illustration of
typical shape. Keep in mind that using this approximation
the null hypothesis probability does not mean that one sho
actually evaluate the distribution ofD on the actual data
considering only points and not strands.

This picture suggests using something like t
Kolmogorov-Smirnov test@5# on observed and expecte
r(D), a standard procedure which tests for statistically s
nificant differences in an empirical and theoreticaly expec
cumulative distribution of a independent scalar random v
able. In practice, that statistic turned out overly sensitive

FIG. 1. An example of expected and observed probability d
sity functions forD under the null hypothesis.
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medium-time-scale dynamical fluctuations observed even
stationary attractors. That is, depending on the dynam
system, there could sometimes be excessive rejections o
null hypothesis even under stationary conditions. Instea
‘‘sign test’’ provides an even simpler and effective te
which is most sensitive to the long-time-scale changes c
acteristic of nonstationarity. Denote the location at the m
dian of the expected distributionr(D) asD* : that is,

E
0

D*
r~z!dz5E

D*

N

r~z!dz5
1

2
. ~5!

Then one counts the proportion of actually observed stra
which had values ofD,D* : Nobserved. Under the assump
tions of the null, one expects to findp5Nobserved/Nstrandsnear
p050.5, because that was the criterion which genera
D* . Testing the proportion of independent events again
presumed underlying value is an elementary procedure
classical statistical theory, often called the ‘‘binomial test
Under the null hypothesis,

z5~p2p0!@Nstrands
21p0~12p0!#

21/2 ~6!

has a calculable distribution, which in turn is nearlyN(0,1)
for reasonably largeN. N(0,1) is a Gaussian random var
able with zero mean and unit standard deviation. Imag
accumulating one for each strand withD,D* , and zero for
the remainder. If these were independent random eve
then this sum has a distribution which converges to Gaus
by the central limit theorem. The normal approximation
very withN.50, very likely to be the case with experimen
tal data from physical experiments. Thus if one obser
z.2.36, the location of the 99% cumulative area of a st
dard Gaussian, one rejects the null at the 99% confide
level. Unlike some generalized tests of the equality of dis
butions, this particular sign test ensures that the violation
in the proper direction to be caused by nonstationarity, wh
causes especiallylarge values ofp and hencez. Significant,
but negative, values ofz suggest important nonuniform
neighbor time differences distinct from nonstationari
Strong low-frequency periodic behavior, resulting in lon
term neighbor correlations, seems able to produce such
sults.

An efficient implementation is not difficult. Neares
neighbors in state space may be found in totalO(N logN)
time using data structures such as thek-d tree @11,12#. A
reverse index from point indices to those strands which c
tain them is sortable inO(N logN) time, making the culling
efficient in addition. Given a culled set of strands, the sta
tic may be evaluated rapidly. As with most algorithms of th
type, the evaluation of near neighbors dominates all ot
aspects of the computation time. On a standard Pent
workstation, the author’s implementation of the statis
takes approximately 5 s toevaluate, withN530 000 points
embedded inR3.

A computationally expensive but valuable confirmati
protocol is to examine the proportion ofz values which re-
ject the null as computed using randomly selected conti
ous subsegments of lengthsN*,N of the original data: a
‘‘poor-man’s bootstrapping.’’ With authentically nonstation
ary behavior, this proportion rises steadily withN* . One
may also examine the behavior withN* of p averaged over

-
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56 319STATISTICAL TEST FOR DYNAMICAL . . .
subsamples as well as its effective significance via Eq.~6! to
check whetherp increases consistently with largelyN* , and
is not just wider thanN(0,1), with some resamples bein
anomalously large and some anomalously small.

Figure 2 demonstrates the importance of the strand
rections. The data come from an experimental nonlinear
cuit used to investigate synchronization and chaotic com
nications. The dynamics are known to be low dimension
and the data clean. In any useful sense the data are
stationary, yet the uncorrected statistic shows large vio
tions, as would naive tests found in statistical textbooks s
as equality of means or variances tried on first and sec
halves. By constrast, the present method shows no spu
null violations above the expected proportion. Consist
with the bootstrapping analysis, the datasetin toto violates
the null strand without corrections, but is consistent wh
those corrections are reinstated.

The next example demonstrates a more concrete engin
ing application. The dataset was the pressure drop acro
15-cm gap in a ‘‘fluidized bed reactor,’’ consisting of gla

FIG. 2. Proportion of rejections as a function of subsample s
when strand corrections are turned off and on. The data set is
a stationary low-dimensional chaotic circuit, but without strand c
rections there is frequent suprious rejection of the null.
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particles 2.7 mm in mean diameter in a 10-cm-diameter v
tical cyclinder with air blown at constant flow from the bo
tom, a small-scale model of industrial chemical reactors.
some external parameter regimes, the mass of particles
dergoes complex motion, which appears to be a combina
of low-dimensional bulk dynamics and small-scale hig
dimensional turbulence of the individual particles@13#. The
observed variable was a pressure difference between
vertically separated taps. Figure 3 shows portions of tim
delay embedding of orbital sections of the dataset take
the same experimental parameters, and one when the air
was boosted by 5%. Figure 4 shows time-series exce
taken from the two conditions. The change in the attracto
rather subtle, and difficult to diagnose reliably by eye. T
statistic distinguishes them easily: Figure 5 shows the bo
strapping result on three datasets; one under stationary
ditions, one with a step change to the higher flow, and o
with a slow ramp to that same flow. The lower right plot
Fig. 3 ~not the upper left! is from the data taken at a differen
flow rate than the others.

The author applied the method to quite a variety of d
sets, simulated and experimental, and it yields correct
appropriate results in all cases found so far. It is not hig
sensitive to reconstruction parameters within a reasona
large range, and does not require that the data be knowa
priori to be clean and low dimensional: it is not cle
whether the fluidized bed datasets analyzed herein are b
described as ‘‘chaos’’ or ‘‘very noisy periodicity.’’

Any statistical inference is only as good as its assum
tions, in this case, that all strands are completely indep
dent, and that in stationary systems nearest-neighbor
delays are distributed completely uniformly. This is inde
true for unbiased stochastic draws from probability densit
but is only an approximation for real dynamical systems.
constrast to simple assumptions of classical statistics, the
versity of possible behaviors under nonlinearity makes
very difficult to construct any interesting test wherechaosis
the null, something surrogate data methods do not attem
The present test does so by testing for one specific aspe
dynamical systems, and making an approximation that e

e
m
-

ial
r.
dif-
FIG. 3. Phase-space plots of the different
pressure signal from a fluidized bed reacto
Three are from the same parameters, one is
ferent.
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FIG. 4. Time series excerpts from a fluidize
bed, with slightly different settings of the externa
parameter. The distinction is difficult to make b
eye.
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pirically appears to be reasonably good. The main problem
that the ‘‘level’’ of the test, the frequency of findin
z.2.36 under stationary conditions, is not exactly calibra
to the supposed 1%. This does not seem to be resolvab
general unless has had large amounts of orbits on the spe
attractor observed in stationary conditions, from which o
could generate the actual distribution ofz in Eq. ~6! instead
assuming the normality. If the data were truly drawn ind
pendently and randomly from probability functionsr1 and
r2, the approximation would be exact. The value of th
method is an approach and approximation that works
many realistic datasets without requiring a large databas
previously observed stationary orbits. This issue is onl
major concern if one wishes to detect nonstationarity w
the maximum power and know the proportion of false rej
tions; in many practical applications where data are reas
ably copious the statistic detects the physically relevant n
stationarity at a very high confidence level, so that one
use a very conservative threshold. For instance, in the cur
fludized bed application the typicalz value under nonstation
arity was approximately 20, a definitive rejection of the nu

The exact power of the statistic depends, of course, on
particular sort of state-space reconstruction that might
used, as that choice can influence the existence and pro
ties of neighbors used to compute the stationarity test.
with all dynamical statistics operating on state space, so
external knowledge of the appropriate time scale and dim
sion is needed to ensure that the neighbor information in
reconstructed space is not wholly spurious. In the auth
experience, the present method is less sensitive than o
statistics such as correlation dimension or Lyapunov ex
nent, but admittedly this is a difficult notion to quantify. Th
particularz value may change with embedding paramete
but the presence or absence of a strong rejection usually
not change over a reasonably wide range of parameters

It may conceivably be possible that a particular lo
dimensional reconstruction might mask the effects of t
physical nonstationarity, but this circumstance does not s
to be generic; most of the time different reconstruction
rameters will reveal the nonstationarity to some degree
is
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another. If the full probability distribution in the true sta
space isr(y), then in a partially reconstructed state spa
r(x) is generically the sum over regions ofy mapping into
x of r(y) multiplied by the Jacobian determinant for th
change of variables. Unless the choice of the projection fr
y→x is chosen carefully, part of the information in eve
variable of y, and thus the nonstationaryr(y) is going to
show its effects in thex space, if the variables are sufficient
coupled. The principle is similar to that governing the reco
struction of a dynamical system itself@3#.

There is a whole class of related statistics that use
same neighbor principle. Instead ofu(T(xnn)2T(x)u one may
use the distribution of any general functionf (xnn,x). For
instance,f (•,•) may be the ‘‘indicator function,’’ yielding 1
if both its arguments come from the same dataset, an
otherwise. This provides a test for equivalence of the t
data sets, and can also yield a distance measure. The a
has already done so to implement a ‘‘change-po
detector’’ which accurately finds the particular moment
time when some underlying parameter is changed,
the statistical confidence of its authenticity. Choosi

FIG. 5. Proportion of rejections for stationary, step change,
ramped air flow.
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56 321STATISTICAL TEST FOR DYNAMICAL . . .
f5usin@VT(xnn)1F#2sin@VT(x)1F#u yields a test for the
presence, and statistical significance, of a slow perio
modulation of the underlying attractor. If one has measu
some other slowly varying signaly(t), then the choice of
f5uy@T(xnn)#2y@T(x)#u provides a test of whether there
any statistically significant dynamical correlation betweny
and the pattern of orbits traced out byx. For instance, one
might wish to test the hypothesis that some high-freque
weather patterns inx are significantly correlated with a slow
variable such as historical CO2 levels. These variations, a
ternative stationarity algorithms based on the correlation
tegral, as well as more extensive experimental results wil
investigated in the author’s forthcoming research.

Isliker and Kurths @14# proposed testing the one
dimensional marginal distribution of the data for stationari
aw

ick
in

h.

P.
ic
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e
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but this ignores dynamical time-domain information, a
their method did not appear to account for serial correlati
Brown, Rulkov, and Tracy@15# synchronized empirical or-
dinary differential equation models to time series, and p
posed using a long-term increase in synchronization erro
a measure of nonstationarity. This method appears powe
and relies on nontrivial dynamical information, but requir
clean low-dimensional data and does not provide an obvi
statistical test. Kantz@16# quantified attractor difference
through the correlation integral, but did not provide a h
pothesis test.

The author is indebted to discussions with C. Stuart Da
Charles Finney, Ke Nguyen, and Martin Casdagli. This
search was supported by the U.S. Department of Energy
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