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Statistical test for dynamical nonstationarity in observed time-series data
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Information in the time distribution of points in a state space reconstructed from observed data yields a test
for “nonstationarity.” Framed in terms of a statistical hypothesis test, this numerical algorithm can discern
whether some underlying slow changes in parameters have taken place. The method examines a fundamental
object in nonlinear dynamics, the geometry of orbits in state space, with corrections to overcome difficulties in
real dynamical data which cause naive statistics to [f8i.063-651X97)09907-§

PACS numbes): 05.45+b

Since the discovery of time-delay embedding for state+ithm or procedure than a number. For illustration, consider
space reconstructiofil—3] a significant effort has been de- testing for chaos by using the largest Lyapunov exponent as
voted to the development of techniques to extract informaa statistic. A positive Lyapunov exponent implies chaos, but
tion in observed time-series data from a geometricalpne can only practically compute finite-time approximations
dynamical viewpoint. Underlying nearly all of these tech-to the exponent. There is a distribution of finite-time expo-
niques(Ref.[4] is a review is an assumption dftationarity. nents over samples of the orbit, and thus even if the true
the dynamical process, and hence the geometrical attractsystem has a zero or negative largest exponent, it is possible
containing the orbits, has not changed on long time scales thdat any particular finite-time sample will register a positive
order of the length of the dataset. If not true, there may beé.yapunov exponent statistic. A true statistical test would ac-
significant behavior on time scales longer than may be relicount for this source of fluctuations.
ably resolved with the given data; or perhaps experimental A useful test is obviously substantially more difficult to
parameters, presumed fixed, have actually changed durindesign than a statistic, especially if one wishes to entertain
the run. realistic and interesting hypotheses and account for poten-

Despite its nearly universal assumption, there is little predially confounding effects likely to occur in experimentally
vious literature on reliably testing for stationarity in physical observed data. There is a real tension between tests which
situations. This work demonstrates a statistic and associatede accompanied by rigorous analytical results and
hypothesis test which sensitively detects nonstationary beacceptance-rejection criteria from the classical statistical lit-
havior given broadband and potentially chaotic data. A staerature, and the undeniably heuristic statistics invented by
tionary dataset is presumed to to be sufficiently long to trac@hysicists and mathematicians to quantify particular proper-
out a good approximation to the invariant measure. The alties of a time series. The former may measure properties
gorithm quantifies “how much has the invariant measure, asather uninteresting or irrelevant to a dynamicist, and make
inferred from the observations, changed over long timeassumptions likely to be massively violated by actual time
scales,” and whether “this change is statistically signifi- series(thus rendering their acceptance-rejection procedures
cant.” void), while the latter do not usually come with sufficiently

It is important to recognize the difference between a stareliable test procedures.
tistic and a test. A statistic is a quantity deterministically For the purpose of testing for stationarity, one’s first
computable from a particular dataset; common examples irnthought is to imagine measuring any number of simple sta-
clude the sample mean or the value of a correlation integratistics, such as the mean or standard deviation, from the two
A test combines a statistic with some additional knowledgehalves of the time series, and using a standard stastistical
and assumptions concerning the distribution of that statistitiypothesis test based on their presumed equality, but such an
expected under some particular hypothesis of interest. Withpproach is not particularly good. First, the statistic is arbi-
any nontrivial dynamics, the value of a particular statistictrary and not related to any natural geometrical properties of
will differ for separate finite-sized samples of the time serieghe attractor, which is the interesting object when analyzing
generated by the same physical process, and thus one needdymamical data. Unless the particular statistic estimates a pa-
probability distribution to describe the “expected fluctua- rameter deemed physically or dynamically important, such
tions” in addition to the “expected value” of a statistic over arbitrary choices are not particularly enlightening, and their
some class of processes. Armed with such knowledge, a tepbwer against various sorts of nonstationarity vary greatly.
places the observed value of the statistic in the expected Second, naively applying such procedures may greatly
distribution: if it lies well outside the bulk of the expected overestimate the significance of differences: observed dy-
distribution, one can “reject the null hypothesis”"—and, one namical data are far from uncorrelated, yet the simple, clas-
presumes, its underlying physical basis—under which onaical statistical estimations of confidence rely heavily on the
computed the expected distribution. A test is more an algonotion of independent observations. For example, measuring

empirical means of first and second halves of a chaotic
dataset and performing the classitakst for their equality
*Electronic address: kennel@yapunov.ucsd.edu [5] will quite often spuriously(and vehementlyreject the
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null hypothesis of stationarity, even when the data come The actual statistic “feels” the same effect but is more
from clean stationary experiments or well-known simplesubtle: one collects the distribution of
models such as the Lorenz attractor. Such methods do n@=|A(x)|=|(T(x")—T(x)| for all observedx, where
reliably diagnose the intuitive concept of dynamical station-T( ) denotes the time index of the point. Nonstationarity
arity that a typical physicist imagines. induces an excess number of small value®othan other-

The present work attempts to rectify these two issues. Wise expected. The data need not be partitioned into sections.
sidestepirect estimations of the invariant measure from ob-  Naively countingD from pointwise neighbors does not
served data. Counting points in boxes of coarse-grained statender a successful algorithm. As with the correlation dimen-
space, as used for computing mutual informatéf, for  sion[10], one must exclude neighbors close in time because
instance, introduces potentially problematic issues such agey are not independent of the reference point. If a prospec-
the arbitrary choice of box size, quantization artifacts, andive neighbor would result i =|T(x"") — T(x)|<W, ignore
poor scaling with the embedding dimension. Kernel densityit and continue searching instead. The inteéls set to a
estimators are very computationally intensive in higher di-characteristic autocorrelation time, perhaps 3-5 times the
mensions, and functionals or statistics on such estimates mayst minimum of mutual information.
require difficult multidimensional integrals. Further, their  Equally important, but less obvious, is accounting for se-
formalism does not naturally offer clear tests for signifi- rial correlation of neighboring trajectories: iterates of nearest
cance. Instead, the solution adopted here quantifies nonstaeighbors often remain nearest neighbors, but this does not
tionarity using properties afearest neighborin state space. give new information. The present algorithm gathers mul-
Neighbor searching is efficient and the estimates of consetiple pairs of points and their neighbors which share the same
quent properties do not have @ima facie exponential A, i.e., are iterates of previously seen pairs, into the same
“curse of dimensionality.” Neighbor statistics were used in strand If the A associated wittx(i) is the same as that for
Refs.[7,8] to determine minimum embedding dimension for x(i — k) for anyk e [1,W], appendk(i) and its nearest neigh-
reconstruction, and to quantify predictability of observedpor to the strand associated withi — k). Otherwise, start a
chaotic datd9]. In any case, accounting for the serial corre-new strand withx(i), and its nearest neighbor with the as-yet
lation present in experimental data is a major focus of thissple element. Note that all pairs of a single strand need not
work, and neighbor information seems suited to this task. pe contiguous in time; there is allowed a gap upAdtime

As background motivation, suppose we have two empiristeps long, though this large an upper bound is rarely real-
cal probability distributionsp; and p,, the measures in the jzed in practice. Allowing such gaps prevents noise from
first and second halves of the dataset. These distributions aggymaging the proper accounting of neighbor correlations.
over the full multidimensional state space, not scalar histostrands are collections of pairs of points which are nearest
grams. One wonders whether the observations are compaigighbors to one another, and which all share the sAme
ible with the hypothesis that; = p,. Rewrite these distribu-  Their key utility is that they automatically correct for sub-

tions as stantial serial correlation in the time series by bundling
N “similar” observations into a single unitsee Ref.[8] for
_P1tp2  p1T P2 detailg.
="yt =potop, @ The final correction culls strands which share any under-
lying points, whether in the reference or neighbor part, be-
p1itps  pL1—p2 cause the information that they contribute is not completely
p2=—% ~ 5 —Po9p. (20 independent. If any two strands share any underlying point,

one is randomly deleted until no remaining strands have any
points in common.

Without the corrections, thBl used in the statistical test
would be substantially larger than it ought to be, and would
cause spurious null violations. With the corrections, the ob-
servedD values from the final strand set are nearly indepen-

Given somex from the first half, consider the probability
that its nearest neighbor in state spax®, is also in the
same half. Assumingp(X™)~p(X), Psame=p1/(p1t+p2)
=(po+ 6p)/2py. The expected proportion of matches is thus

(ot 5p)2 dent of one another, and one can apply standard techniques
f prl(x)psame:<u> , of statistical inference assuming that they are so.
2po first half We test the observed distribution Df for the final set of

. . strands against the distribution expected under the null hy-
With the same argument for the second half, we find thepothesis of stationarity. If the process were complete station-

overall expectation of seeing same-half matches is arity, the time index of a neighbor would be independent
from that of the reference; this fact may be used construc-

(po— 6p)2+(po—p)? po+ op? tively to generate the expected distribution. For each ob-
E(same= 2p0 - 2p0 served strand, keep the reference portion as it is, but imagine

that the neighboring portion could have started at any time
1 S5p? index in[1,N] with uniformly equal probability, excluding
"2 2_po ‘ ®) the intervalW steps before the start ad steps after the end
of the reference portion of the strand, with starting index
Nonstationarity, i.e.p+# 0, always increases this quantity, and lengthl. Each potential “neighboring location” has an
meaning that neighbors in state space are especially close &ssociated which contributes to the expected distribution.
time when the distribution drifts over time. That is, for each potential neighboring locatiok
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x10" } ‘ . . ‘ . . . medium-time-scale dynamical fluctuations observed even in
stationary attractors. That is, depending on the dynamical
system, there could sometimes be excessive rejections of the
null hypothesis even under stationary conditions. Instead, a
o “l \“1 ‘ | “sign test” providgs_ an even simpler and effective test
“] I‘\’ Al } which is most sensitive to the long-time-scale changes char-
vsl ]’] e ‘ iw ] acteristic of nonstationarity. Denote the location at the me-
F‘ mn“‘ ! dian of the expected distributign(D) asD*: that is,
” “‘ \‘”‘” m | l
‘l“l’ i

il

25-

Relative probability

fD*mz)dz: fN p(2)dz=2 5
0 D* 2’

‘ll i Then one counts the proportion of actually observed strands

which had values 0D <D*: Ngpserveqg Under the assump-

tions of the null, one expects to fim= N gpserved Nstrangsn€ar

0 1000 2000 3000 40'0Toime%cii(f)é)renCeeol?sf)a mnggo 8000 900010000 po=0.5, because that was the criterion which generated
D*. Testing the proportion of independent events against a

FIG. 1. An example of expected and observed probability denPresumed underlying value is an elementary procedure in

-0.5

sity functions forD under the null hypothesis. classical statistical theory, often called the “binomial test.”
Under the null hypothesis,
e[1,j—W]JU[j+1+W,N], increment the count of expected i N 15 (1— —-12 6
=|k—j|: C(D)—C(D)+1. Repeat for all strands, gener- 2= (P~ Po)[Nsranas “Po(1~Po)] ©®
ating a totalC(D), and normalize: has a calculable distribution, which in turn is neaNy0,1)
for reasonably larg&N. N(0,1) is a Gaussian random vari-
D)=C(D ck). 4 able with zero mean and unit standard deviation. Imagine
PerpeciehD) = C( )/ Ek: (k) @ accumulating one for each strand with< D*, and zero for

the remainder. If these were independent random events,
This procedure takes computation tin@(NpsindNsiranad then this sum has a distribution which converges to Gaussian
and so may be slow. An approximation good for reasonablyyy the central limit theorem. The normal approximation is
large N is the triangular-shaped function derived by assum+ery with N>50, very likely to be the case with experimen-
ing all strands are but a single point long, and that all refertal data from physical experiments. Thus if one observes

ence locations were used with uniform probability: z>2.36, the location of the 99% cumulative area of a stan-
dard Gaussian, one rejects the null at the 99% confidence

p(D)=0, De[O0W], level. Unlike some generalized tests of the equality of distri-

butions, this particular sign test ensures that the violation be

_, N-D in the proper direction to be caused by nonstationarity, which

De[W+1N-1], causes especiallarge values ofp and hence. Significant,

but negative, values of suggest important nonuniform

with M chosen to normalize(D). This can be derived by neighbor time differences distinct from nonstationarity.
assuming a uniform probability density[id,N] of a random  Strong low-frequency periodic behavior, resulting in long-
variable j and another variabl& with uniform density in  term neighbor correlations, seems able to produce such re-
[1N] excluding[j—W,j+W], and integrating to find the sults.
distribution of |k—j|. The triangular distribution would be An efficient implementation is not difficult. Nearest
exact for infinitely long datasets, or if strands were alwaysneighbors in state space may be found in ta4N logN)
but one point long. The analytical approximation improvestime using data structures such as tad tree[11,12. A
with the increasing size of the dataset, the circumstancesverse index from point indices to those strands which con-
when the computational effort grows increasingly burden-+ain them is sortable i®(N logN) time, making the culling
some. In practical application, switching to the analyticalefficient in addition. Given a culled set of strands, the statis-
formula whenN goinidNsirands™ 10’ has proven to be a reason- tic may be evaluated rapidly. As with most algorithms of this
able, and conservative, choice. Figure 1 shows an examplgpe, the evaluation of near neighbors dominates all other
observed and expected distribution as an illustration of th@spects of the computation time. On a standard Pentium
typical shape. Keep in mind that using this approximation forworkstation, the author’'s implementation of the statistic
the null hypothesis probability does not mean that one shoulthkes approximatgl5 s to evaluate, withN=30 000 points
actually evaluate the distribution dd on the actual data embedded irR>.
considering only points and not strands. A computationally expensive but valuable confirmation

This picture suggests using something like theprotocol is to examine the proportion afvalues which re-
Kolmogorov-Smirnov tesf5] on observed and expected ject the null as computed using randomly selected contigu-
p(D), a standard procedure which tests for statistically sig-ous subsegments of lengths* <N of the original data: a
nificant differences in an empirical and theoreticaly expectedpoor-man’s bootstrapping.” With authentically nonstation-
cumulative distribution of a independent scalar random variary behavior, this proportion rises steadily win¥. One
able. In practice, that statistic turned out overly sensitive tanay also examine the behavior wit¥ of p averaged over

p(D)=M N= (WD)
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particles 2.7 mm in mean diameter in a 10-cm-diameter ver-
@— @i strand canectons tical cyclinder with air blown at constant flow from the bot-
os | B ses ot | tom, a small-scale model of industrial chemical reactors. For
o some external parameter regimes, the mass of particles un-
g . dergoes complex motion, which appears to be a combination
/ . of low-dimensional bulk dynamics and small-scale high-
e b dimensional turbulence of the individual particlgds3]. The
0a | o~ \\/ : | observed variable was a pressure difference between two
Vs vertically separated taps. Figure 3 shows portions of time-
o delay embedding of orbital sections of the dataset taken at
02§ ] the same experimental parameters, and one when the air flow
was boosted by 5%. Figure 4 shows time-series excerpts
o — o e . taken from the two conditions. The change in the attractor is
0 5000 10000 15000 20000 rather subtle, and difficult to diagnose reliably by eye. The
SubsetSize statistic distinguishes them easily: Figure 5 shows the boot-
FIG. 2. Proportion of rejections as a function of subsample sizeStrapping result on three datasets; one under stationary con-
when strand corrections are turned off and on. The data set is froditions, one with a step change to the higher flow, and one
a stationary low-dimensional chaotic circuit, but without strand cor-With a slow ramp to that same flow. The lower right plot in

06 -

Proportion of null violations

rections there is frequent suprious rejection of the null. Fig. 3(not the upper lejtis from the data taken at a different
flow rate than the others.
subsamples as well as its effective significance via(Bgto The author applied the method to quite a variety of data

check whethep increases consistently with largd*, and  sets, simulated and experimental, and it yields correct and
is not just wider thanN(0,1), with some resamples being appropriate results in all cases found so far. It is not highly
anomalously large and some anomalously small. sensitive to reconstruction parameters within a reasonably

Figure 2 demonstrates the importance of the strand cofarge range, and does not require that the data be kreown
rections. The data come from an experimental nonlinear cirpriori to be clean and low dimensional: it is not clear
cuit used to investigate synchronization and chaotic commuwhether the fluidized bed datasets analyzed herein are better
nications. The dynamics are known to be low dimensionaldescribed as “chaos” or “very noisy periodicity.”
and the data clean. In any useful sense the data are quite Any statistical inference is only as good as its assump-
stationary, yet the uncorrected statistic shows large violations, in this case, that all strands are completely indepen-
tions, as would naive tests found in statistical textbooks sucldent, and that in stationary systems nearest-neighbor time
as equality of means or variances tried on first and secondelays are distributed completely uniformly. This is indeed
halves. By constrast, the present method shows no spuriotigie for unbiased stochastic draws from probability densities,
null violations above the expected proportion. Consistenbut is only an approximation for real dynamical systems. In
with the bootstrapping analysis, the datasetoto violates  constrast to simple assumptions of classical statistics, the di-
the null strand without corrections, but is consistent wherversity of possible behaviors under nonlinearity makes it
those corrections are reinstated. very difficult to construct any interesting test wheteaosis

The next example demonstrates a more concrete enginedhe null, something surrogate data methods do not attempt.
ing application. The dataset was the pressure drop acrossTde present test does so by testing for one specific aspect of
15-cm gap in a “fluidized bed reactor,” consisting of glass dynamical systems, and making an approximation that em-
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pirically appears to be reasonably good. The main problem ianother. If the full probability distribution in the true state
that the “level” of the test, the frequency of finding space isp(y), then in a partially reconstructed state space
z>2.36 under stationary conditions, is not exactly calibratedo(x) is generically the sum over regions wfmapping into
to the supposed 1%. This does not seem to be resolvable i of p(y) multiplied by the Jacobian determinant for the
general unless has had large amounts of orbits on the specifihange of variables. Unless the choice of the projection from
attractor observed in stationary conditions, from which oney—x is chosen carefully, part of the information in every
could generate the actual distributionofn Eq. (6) instead  variable ofy, and thus the nonstationap(y) is going to
assuming the normality. If the data were truly drawn inde-show its effects in th& space, if the variables are sufficiently
pendently and randomly from probability functiops and  coupled. The principle is similar to that governing the recon-
p», the approximation would be exact. The value of thisstruction of a dynamical system its¢B].
method is an approach and approximation that works for There is a whole class of related statistics that use the
many realistic datasets without requiring a large database afame neighbor principle. Instead|¢T (x"™) — T(x)| one may
previously observed stationary orbits. This issue is only aise the distribution of any general functidiix"",x). For
major concern if one wishes to detect nonstationarity withinstancef(-,-) may be the “indicator function,” yielding 1
the maximum power and know the proportion of false rejec-f both its arguments come from the same dataset, and 0
tions; in many practical applications where data are reasorstherwise. This provides a test for equivalence of the two
ably copious the statistic detects the physically relevant nondata sets, and can also yield a distance measure. The author
stationarity at a very high confidence level, so that one caimas already done so to implement a ‘“change-point
use a very conservative threshold. For instance, in the curregietector” which accurately finds the particular moment in
fludized bed application the typicalvalue under nonstation- time when some underlying parameter is changed, and
arity was approximately 20, a definitive rejection of the null. the statistical confidence of its authenticity. Choosing
The exact power of the statistic depends, of course, on the
particular sort of state-space reconstruction that might be , ‘ ‘ ‘ ‘ - ‘ ®
used, as that choice can influence the existence and propet ye
ties of neighbors used to compute the stationarity test. As o @cesnion
with all dynamical statistics operating on state space, some 08~ § frousemeaw /
external knowledge of the appropriate time scale and dimen- ¢
sion is needed to ensure that the neighbor information in the 5
reconstructed space is not wholly spurious. In the author's 2
experience, the present method is less sensitive than othes
statistics such as correlation dimension or Lyapunov expo- £
nent, but admittedly this is a difficult notion to quantify. The
particularz value may change with embedding parameters,
but the presence or absence of a strong rejection usually doe 2~ .
not change over a reasonably wide range of parameters.
It may conceivably be possible that a particular low-  ;oe_ . - — - § ° ° °
dimensional reconstruction might mask the effects of true ~ **® 10000 e 20000 26000
physical nonstationarity, but this circumstance does not seem
to be generic; most of the time different reconstruction pa- FIG. 5. Proportion of rejections for stationary, step change, and
rameters will reveal the nonstationarity to some degree oramped air flow.
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f=|sifQTX"™) + d]—sifQT(x) + ®]| yields a test for the but this ignores dynamical time-domain information, and
presence, and statistical significance, of a slow periodi¢heir method did not appear to account for serial correlation.
modulation of the underlying attractor. If one has measuredrown, Rulkov, and Tracy15] synchronized empirical or-
some other slowly varying signal(t), then the choice of dinary differential equation models to time series, and pro-
f=|y[T(X"]—y[T(x)]| provides a test of whether there is posed using a long-term increase in synchronization error as
any statistically significant dynamical correlation betwen a measure of nonstationarity. This method appears powerful,
and the pattern of orbits traced out ly For instance, one and relies on nontrivial dynamical information, but requires
might wish to test the hypothesis that some high-frequencylean low-dimensional data and does not provide an obvious
weather patterns ir are significantly correlated with a slow statistical test. Kant416] quantified attractor differences
variable such as historical CQevels. These variations, al- through the correlation integral, but did not provide a hy-
ternative stationarity algorithms based on the correlation inpothesis test.

tegral, as well as more extensive experimental results will be o . ) .
investigated in the author’s forthcoming research. The author is indebted to discussions with C. Stuart Da.W,

Isliker and Kurths [14] proposed testing the one- Charles Finney, Ke Nguyen, and Martin Casdagli. This re-
dimensional marginal distribution of the data for stationarity,search was supported by the U.S. Department of Energy.
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